Chem. Ber. 119, 2777-2795 (1986)

Schrittweise Bildung heterometallischer Dreikern- und Vierkern-Cluster aus Dipalladium(I)-Verbindungen und Carbonylmetallat-Anionen. Kristall- und Molekülstruktur von (C₅H₅)₂(CO)₃(P*i*Pr₃)₂MoPd₂

Helmut Werner^{*a}, Peter Thometzek^a, Carl Krüger^b und Hans-Jürgen Kraus^b

Institut für Anorganische Chemie der Universität Würzburg^a, Am Hubland, D-8700 Würzburg, und Max-Planck-Institut für Kohlenforschung^b, D-4330 Mülheim a. d. Ruhr

Eingegangen am 14. Februar 1986

Durch Umsetzung der carboxylat- bzw. halogenid-verbrückten Zweikernkomplexe (μ -C₃H₃)-(μ -X)Pd₂(PR₃)₂ (1, **2a**-c) mit Na[C₃H₃M(CO)₃] (M = Cr, Mo, W), Na[Co(CO)₄] und [Na(diglyme)₂][V(CO)₆] werden die Heterometall-Dreikerncluster **3**-11 synthetisiert. Der Aufbau der MoPd₂-Verbindung (C₃H₃)₂(CO)₃(PiPr₃)₂MoPd₂ (4), die auch aus (μ -C₃H₃)(μ tBuCO₂)Pd₂(PiPr₃)₂ (1) und C₃H₃Mo(CO)₃SiMe₃ erhältlich ist, wurde durch eine Röntgenstrukturanalyse bestimmt. **4** besitzt ein tetraedrisches MoPd₂C-Gerüst, dessen Kohlenstoffatom von einer dreifach-verbrückenden CO-Gruppe stammt. Die Pd – Pd- und Pd – Mo-Kanten des Tetraeders sind durch einen "allyl-en"-artig koordinierten C₃H₃-Ring und zwei semi-verbrückende CO-Liganden überbrückt. Ähnlich aufgebaute Dreikerncluster **15**-**18** entstehen ausgehend von (μ -2-MeC₃H₄)(μ -X)Pd₂(PiPr₃)₂ (**14a**-c) und Na[C₃H₅M(CO)₃] (M = Cr, Mo, W) bzw. Na[Co(CO)₄]. Durch Austausch der Cyclopentadienyl-Brücke in **4** und **6**-**8** gegen Chlorid und nachfolgende Reaktion mit Na[C₃H₅M(CO)₃] können die Pd₂M₂-Vierkerncluster **22** und **23a**-c hergestellt werden. Die Bindungsverhältnisse der heterometallischen Dreikern- und Vierkern-Cluster (mit 44 bzw. 58 Valenzelektronen) werden kurz diskutiert.

Stepwise Formation of Heterometallic Trinuclear and Tetranuclear Clusters from Dipalladium(I) Compounds and Carbonylmetalate Anions. The Crystal and Molecular Structure of $(C_5H_5)_2(CO)_3(PiPr_3)_2MOPd_2$

The carboxylate- or halide-bridged dinuclear complexes $(\mu-C_5H_5)(\mu-X)Pd_2(PR_3)_2$ (1, 2a-c) react with Na[C₅H₅M(CO)₃] (M = Cr, Mo, W), Na[Co(CO)₄], and [Na(diglyme)₂][V(CO)₆] to produce the heterometallic trinuclear clusters 3-11. The structure of the MoPd₂ compound $(C_5H_5)_2(CO)_3(PiPr_3)_2MoPd_2$ (4) which is also obtained from $(\mu-C_5H_5)(\mu-tBuCO_2)-Pd_2(PiPr_3)_2$ (1) and $C_3H_5Mo(CO)_3SiMe_3$ has been determined by X-ray analysis. 4 contains a tetrahedral MoPd₂C framework, the carbon atom of which belongs to a triply-bridging CO group. The Pd-Pd and Pd-Mo edges of the tetrahedron are further bridged by an "allyl-ene" type cyclopentadienyl ring and by two semi-bridging CO ligands. Similar trinuclear clusters 15-18 are formed from $(\mu-2-MeC_3H_4)(\mu-X)Pd_2(PiPr_3)_2$ (14a-c) and Na[C₅H₅M(CO)₃] (M = Cr, Mo, W) or Na[Co(CO)₄], respectively. Displacement of the cyclopentadienyl bridge in 4 and 6-8 by chloride and subsequent reaction with Na[C₅H₅M.

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1986 0009-2940/86/0909-2777 \$ 02.50/0 $(CO)_3$ produces the Pd₂M₂ clusters 22 and 23a-c. The bonding properties of the heterometallic trinuclear and tetranuclear clusters (possessing 44 and 58 valence electrons, respectively) is briefly discussed.

Heterometall-Cluster gewinnen zunehmend an Aktualität, was vor allem auf ihre potentielle Bedeutung für die Herstellung sehr effektiver, heterogener Katalysatoren zurückzuführen ist¹⁻³⁾. Dem Ausbau dieses Gebietes stand jedoch bis in jüngster Zeit das Fehlen allgemein anwendbarer Synthesemethoden im Wege, die den Zugang zu Mehrkernverbindungen mit unterschiedlichen Gerüsten von Metallatomen ermöglichten. Das Ziel sollte es sein, Heterometall-Cluster mit drei, vier oder mehr Metallzentren schrittweise aus einkernigen Bausteinen (z. B. Organometallkomplexen) aufzubauen und dabei auch die Umhüllung, d. h. die Koordination der einzelnen Metallatome, zu variieren. Die in den letzten Jahren durchgeführten Arbeiten von Stone⁴⁾ und Vahrenkamp⁵⁾ haben beispielhafte Schritte in diese Richtung gewiesen.

Wir hatten seit 1975 in ausführlichen Untersuchungen gezeigt, daß zahlreiche, verschiedenartig strukturierte Palladium- und Platin-Zweikernkomplexe der allgemeinen Zusammensetzung $(X)(Y)Pd_2(PR_3)_2$ und $(X)(Y)Pt_2(PR_3)_2$ durch "1 + 1-Addition", d. h. durch Kombination zweier einkerniger Ausgangskomplexe, erhältlich sind⁶). Die Brückenliganden X und Y sind – vor allem für M = Pd – relativ leicht austauschbar (z. B. C₅H₅⁻ gegen Cl⁻, SPh⁻, RCO₂⁻ etc.), ohne daß die Metall-Metall-Bindung gespalten wird.

Diese Robustheit des Zweikerngerüsts war Anreiz für uns, an Stelle eines π -gebundenen Liganden wie $C_5H_5^-$ oder eines "klassischen" Anions wie Cl⁻ die Einführung eines Komplexanions $[ML_n]^-$ als Bindungspartner für die M₂-Einheit zu versuchen. Bei der Wahl von $[ML_n]^-$ gaben MO-Rechnungen eine entscheidende Hilfe: Carbonylmetallate wie $[Co(CO)_4]^-$ oder (Cyclopentadienyl)carbonylmetallate wie $[C_3H_5Mo(CO)_3]^-$ sollten besonders geeignet sein⁷. Die nachfolgenden Experimente haben dies auch bestätigt. Wir berichten in der vorliegenden Arbeit ausführlich über die Darstellung und strukturelle Charakterisierung der auf diesem Weg erhaltenen Dreikerncluster mit planarem Pd₂M- oder tetraedrischem Pd₂MC-Kern und weisen zugleich auf Möglichkeiten zum Aufbau entsprechender Vierkernkomplexe hin. Über erste, noch sehr fragmentarische Resultate sind bereits zwei kurze Mitteilungen erschienen^{8,9}.

Synthese und Eigenschaften der Dreikerncluster 3-11

Von den Verbindungen des Typs $(\mu$ -C₅H₅) $(\mu$ -X)Pd₂(PR₃)₂ haben sich diejenigen mit X = RCO₂ für die Synthese von Pd₂M-Clustern (M = Cr, Mo, W) als am vorteilhaftesten erwiesen. Die für P(*i*Pr)₃ als Phosphanligand und Na-[C₅H₅M(CO)₃] als Reaktionspartner durchgeführten Versuche zeigten, daß die Geschwindigkeit des Austausches von RCO₂⁻ gegen [C₅H₅M(CO)₃]⁻ in der Reihe R = Me < Et < tBu zunimmt. Für die Darstellung von 3-8 wurden daher die Komplexe 1 und 2a als Ausgangsverbindungen eingesetzt. 2a war noch nicht bekannt und wurde in Analogie zu 1⁸ synthetisiert. Die nach Gl.(1) erreichte Ausbeute an 3-8 beträgt 80-85%.

Die Verbindungen 3-8 bilden rote bzw. rotbraune Kristalle, die erstaunlich stabil sind und längere Zeit ohne Schutzgas aufbewahrt werden können. In Lösung tritt auch unter Stickstoff langsam Zersetzung unter Metallabscheidung ein.

An Stelle der Natriumsalze der (Cyclopentadienyl)carbonylmetallat-Anionen $[C_5H_5M(CO)_3]^-$ können auch die entsprechenden Trimethylsilyl-Verbindungen $C_5H_5M(CO)_3SiMe_3$ als Reaktionspartner eingesetzt werden. Die beispielhaft untersuchte Umsetzung von 1 mit $C_5H_5M(CO)_3SiMe_3$ zu 4 verläuft praktisch quantitativ. Sowohl in diesem Fall wie auch bei den Umsetzungen von 1 oder der analogen Verbindungen (μ - C_5H_5)(μ -X)Pd₂[P(*i*Pr)_3]₂ (X = Cl, Br, C₅H₅) mit Na[C₅H₅Mo(CO)₃] ändert die Verwendung eines fünf- bis zehnfachen Überschusses des Molybdänkomplexes an dem Ergebnis nichts; eine Verdrängung des die Pd – Pd-Bindung überbrückenden Cyclopentadienylliganden läßt sich in keinem Fall nachweisen.

$$1 + C_5H_5Mo(CO)_3SiMe_3 \longrightarrow 4 + tBuCO_2SiMe_3$$
 (2)

Die Reaktionen von 1 und den aus $(\mu - C_5H_5)_2Pd_2(PEt_3)_2^{17}$ und Me₃SiX (X = Cl, Br) erhaltenen Verbindungen **2b**, c mit Na[Co(CO)₄] bzw. [Na(diglyme)₂]-[V(CO)₆] führen in hoher Ausbeute zu den tieffarbigen Dreikernclustern 9–11. Ihre Eigenschaften sind denen der Verbindungen 3–8 sehr ähnlich. 11 ist unseres Wissens der erste Heterometall-Cluster, der Palladium und Vanadium (d. h. ein elektronenreiches und ein elektronenarmes Übergangsmetall) als Gerüstatome enthält.

Alle Versuche, Pd_2M -Dreikerncluster mit M = Mn, Fe, Nb und Rh herzustellen, blieben erfolglos. Die Einwirkung von Na[C₃H₃Fe(CO)₂] oder Hg[C₃H₃Fe(CO)₂]₂ auf 1 in Toluol führt (auch bei tiefer Temperatur) nur zur Zersetzung des Pd₂-Zweikernkomplexes. Als einziges definiertes Produkt wird [C₃H₃Fe(CO)₂]₂ isoliert, das vermutlich als Folge eines Redox-Prozesses entstanden ist.

Die Umsetzung von 1 mit Na[Mn(CO)₅] liefert an Stelle einer zu 9 und 11 analogen Verbindung (mit zwei verbrückenden und drei endständigen CO-Liganden) sehr rasch und nahezu quantitativ $C_5H_5Mn(CO)_3$. Ein palladiumhaltiges Produkt ist nicht isolierbar. Wir nehmen an, daß das Anion [Mn(CO)₅]⁻ zwar ähnlich wie [Co(CO)₄]⁻ oder [V(CO)₆]⁻ am

Zweikerngerüst angreift, danach aber wegen der hohen Bildungstendenz des Halbsandwich-Komplexes $C_5H_5Mn(CO)_3$ nicht die Carboxylat-, sondern die Cyclopentadienylbrücke (unter Übertragung auf das Mangan) abgespalten wird.

$$\frac{1}{2}, \underbrace{2}_{P,C} \qquad \underbrace{\frac{Na[Co(CO)_{4}]}{-NaX}}_{-NaX} \qquad \begin{array}{c} R_{3}^{P-Pd} \xrightarrow{Pd-PR_{3}} \\ 0=C & \underbrace{Q}_{C} : R = \underline{i}_{Pr} \\ \underbrace{1}_{Q} : R = \underline{i}_{Et} \end{array}$$

$$(4)$$

Die Verbindungen 2b und 2c reagieren mit Na[Mn(CO)₅] ebenfalls nicht zu einem Pd₂Mn-Cluster, sondern zu den unsymmetrisch aufgebauten Zweikernkomplexen 12 und 13. Letzterer bildet sich auch bei den Reaktionen von 2c mit den Carbonylmetallat-Anionen [Fe(CO)₄R]⁻ (R = H, CN), [M(CO)₅R]⁻ (M = Cr, Mo; R = I, CN), [HM₂(CO)₁₀]⁻ (M = Cr, Mo), [Nb(CO)₆]⁻ und [Rh(CO)₄]⁻. Bei Einsatz von [M(CO)_nR]⁻ bzw. [M(CO)_n]⁻ in

definiertem Unterschuß (d. h. im Verhältnis 2c:CO(Ligand) = 1:1) beträgt die Ausbeute an 13 ca. 60-75%. Daneben wird auch $C_5H_5Pd(PEt_3)Br^{10}$ gebildet. Die Verbindungen 12 und 13 sind auch direkt aus 2b, c und CO erhältlich ^{11a}); über ihre Eigenschaften und Struktur wird in einer nachfolgenden Arbeit ausführlich berichtet ^{11b}.

Die ¹H- und ³¹P-NMR-Daten der Komplexe 3–11 sind in Tab. 1 zusammengestellt. Für die Protonen des verbrückenden Cyclopentadienyl-Liganden wird stets nur *ein* Signal beobachtet, obwohl – wie die Röntgenstrukturanalyse von 4 zeigt – der Ring wie ein "Allyl-en"-System an die (PR₃)₂Pd₂-Einheit gebunden ist. Gleiche Verhältnisse liegen auch in anderen Komplexen des Typs (μ -C₅H₅)-(μ -X)Pd₂(PR₃)₂ vor^{6c}). Die Phosphanliganden sind in jedem Fall äquivalent, wie aus dem Auftreten nur eines Signals in den ³¹P-NMR-Spektren hervorgeht.

	$ \begin{array}{c} \delta(\mathbf{C}_{5}\mathbf{H}_{5}\mathbf{P}\mathbf{d}_{2}) \\ (t) \end{array} $	J(PH)	δ(C₅H₅M) (s)	δ(PCH ₁₍₂₎) (m)	δ(PCH _n CH ₃)	N	<i>J</i> (HH) ^{b)}	δ P (s)
5	6.20	1.9	5.21	2.16	1.11 (dtv) ^{c)}	14.8	8.0	35.4
6	5.88	2.0	4.64	1.52	0.94 (tvt) ^{d)}	15.0	7.6	8.1
7	5.90	1.9	5.12	1.53	0.96 (tvt) ^{d)}	14.5	7.0	8.7
8	6.00	1.8	5.08	1.52	1.00 (tvť) ^{d)}	15.2	7.5	9.6
9	5.74	1.9		2.18	1.11 (dtv) ^{c)}	14.6	8.0	37.8
10	5.54	1.9		1.50	0.88 (tvt) ^{d)}	14.8	7.6	9.1
11	5.61	2.0		1.46	0.88 (tvť) ^{d)}	15.0	7.5	8.0

Tab. 1. ¹H- und ³¹P-NMR-Daten der Verbindungen 5-11 in [D₆]Benzol (¹H: δ in ppm gegen TMS int.; ³¹P: δ in ppm gegen 85% H₃PO₄ ext.; J und N in Hz)^{a)}

^{a)} Für ¹H- und ³¹P-NMR-Daten von 3, 4 siehe Lit.⁸⁾. – ^{b)} Aus ³¹P-entkoppelten Spektren. – ^{c)} Dublett von virtuellen Tripletts, nach ³¹P-Entkopplung Dublett. – ^{d)} Triplett von virtuellen Tripletts, nach ³¹P-Entkopplung Triplett.

Wertvolle Hinweise auf die Art der Verknüpfung der $C_5H_3M(CO)_3$ - bzw. $M(CO)_n$ -Gruppierung mit dem Pd₂-Fragment liefern die IR-Spektren (Exp. Teil). Für 3-8 findet man stets drei intensitätsstarke CO-Valenzschwingungen, von denen die beiden höherfrequenten zweifach-verbrückenden CO-Liganden und die niederfrequente einem dreifach-verbrückenden CO-Liganden zuzuordnen sind. In den IR-Spektren der Vierkerncluster $[C_5H_5(CO)_3M]_2Pd_2(PR_3)_2$, die teilweise bereits von Braunstein et al.¹² dargestellt wurden (s. u.) und die gleichen Bauelemente wie die Verbindungen 3-8 aufweisen, treten ebenfalls drei v(CO)-Banden in ähnlichem Bereich auf. Für die Pd₂Co- und Pd₂V-Komplexe 9-11 beobachtet man CO-Valenzschwingungen für endständige und zweifach-verbrückende, nicht jedoch für dreifach-verbrückende CO-Gruppen, wie es aufgrund der in Gl. (4) und (5) gezeigten Strukturvorschläge auch zu erwarten ist.

Kristallstruktur von 4

Einkristalle von 4 wurden aus Toluol/Pentan erhalten. Einzelheiten zur Strukturanalyse sind Tab. 2 zu entnehmen; Atomkoordinaten sowie ausgewählte Bindungsabstände und -winkel sind in Tab. 3 und 4 zusammengefaßt. Der Rotationsfehlordnung eines der Triisopropylphosphan-Liganden um die Pd-P-Bindung wurde bei der abschließenden Verfeinerung der Strukturparameter mit partiellen Besetzungsfaktoren Rechnung getragen.

Abb. 1. Struktur des Komplexes 4

And by Daton but Milblander and and and by ton	fab. 2.	Daten zi	r Krista	llstruk	turana	lyse	von	4
--	---------	----------	----------	---------	--------	------	-----	---

C₃₁H₅₂MoO₃P₂Pd₂, *a* = 13.507(2), *b* = 16.982(2), *c* = 15.0828(9) Å, *β* = 93.288(5)°, *V* = 3453.8 Å³, *d*_{calcd.} = 1.62 gcm⁻³, *Z* = 4 Kristallgröße: 0.50 × 0.61 × 0.43 mm; Kristallfarbe: dunkelrot; Strahlung Mo-K_α 0.71069 Å, μ(Mo-K_α) 14.82 cm⁻¹ Raumgruppe P 2₁/*c* (Nr. 14), *F*(000) 1704 Monochromator Graphit, Θ-Reflexe: 74, 10.4° ≤ Θ ≤ 25.2°; sin Θ/λ_{max} 0.65; emp. Absorptionskorrektur min 0.681, max 1.189, gemessene Reflexe 8369 [+ *h* + *k* + *l*] *R*_{av} 0.055, unabhängige Reflexe 7810, bcobachtete Reflexe 6119, *R* 0.051, *R*_w 0.067, verfeinerte Parameter 271, EOF 3.52, Final aver. Shift/Error 0.014

Die Molekülstruktur ist in Abb. 1 dargestellt, wobei besonders auf die Fehlordnung am Phosphoratom P2 hingewiesen sei. Eine nahezu lineare P-Pd-Pd-P-Einheit wird von einem Cyclopentadienyl-Liganden und einer $C_{5}H_{5}Mo(CO)_{3}$ -Gruppe überbrückt. Letztere ist durch unterschiedliche Bindungen mit den Palladium-Atomen verknüpft. Während je ein CO-Ligand eine Pd-Mo-Bindung überbrückt, sitzt die dritte CO-Gruppe über der durch die drei Metallatome gebildeten Fläche und verbindet auf diese Weise das Molybdänatom mit den beiden Palladiumatomen. Die Winkel an C2 und C3 zeigen an¹³, daß hier semi-verbrückende Carbonylgruppen vorliegen. Eine ganz ähnliche Anordnung

ATOM	x	Ŷ	Z	U, aq	ATOM	x	¥	Z	U ., a.::
но	0.2503(1)	0.9768(1)	0.6273(1)	0.040	C10	-0.1021(5)	1.0482(4)	0,7638(5)	2.054
Pd2	0.3099(1)	0.9027(1)	0.7876(1)	0.042	C101	-0.1197(6)	0.9778(6)	0.8172(7)	C.081
Pd 1	0.1511(1)	0.9942(1)	0.7826(1)	0.035	C102	-0.1891(6)	1.1014(6)	D.7686(7)	0.078
P1	0.0245(1)	1.0901(1)	0,7851(1)	0.039	C11	0.0285(5)	1.1705(4)	0.7015(5)	0.052
P2	0.4689(1)	0.8432(1)	0.7954(2)	0.055	C111	0.1268(6)	1.2137(5)	0.7090(6)	0.070
01	0.3434(4)	1.0801(3)	0.7834(3)	0.054	C112	0.0067(6)	1.1420(6)	0.6069(6)	0.071
02	0.0264(3)	0.9323(3)	0.6239(3)	0.058	C6	0.5441(1)	0.8605(1)	0,7006(1)	0.050
03	0.2737(5)	0.7950(4)	0.6297(5)	0.085	C61	0.5599(1)	0.9583(1)	0.6988(1)	0.050
C1	0.3008(4)	1.0319(4)	0.7414(4)	0.042	C62	0.6375(1)	0.8116(1)	0.6845(1)	0.050
C2	0.1088(5)	0.9526(4)	0.6389(5)	0.046	C7	0.4745(1)	0.7250(1)	0.7884(1)	0.050
C3	0.2686(5)	0.8622(5)	0.6440(6)	0.059	C71	0.4426(1)	0.6941(1)	0,7052(1)	0.050
C41	0.2269(6)	0.9478(6)	0.9403(5)	0.062	C72	0.4266(1)	0.7000(1)	0.8780(1)	0.050
C42	0.1246(5)	0.9437(5)	0.9144(5)	0.051	C8	0.5401(1)	0.8707(1)	0.9004(1)	0.050
C43	0,1054(6)	0.8643(5)	0.8883(6)	0.063	C81	0.6398(1)	0.8302(1)	0.9176(1)	0.050
C44	0.1919(7)	0.8241(5)	0.8968(7)	0.071	C82	0.5313(1)	0.9519(1)	0.9185(1)	0.050
C45	0.2702(5)	0.8749(6)	0.9269(6)	0.062	CGA	0.5630(1)	0.9326(1)	0.7972(1)	0.050
C51	0.3618(6)	0.9774(6)	0.5176(5)	0.063	C61A	0 5519(1)	0.9940(1)	0.7242(1)	0.050
C52	0.2676(6)	0.9591(6)	0.4760(5)	0 060	C623	0.5527(1)	0.9833(1)	0 8836/1)	0.050
C53	0.2074(6)	1 0244(6)	0 4834(5)	0 063	673	0.5018(1)	0 7979(1)	0 8882(1)	0.050
C54	0.2632/71	1 0833(6)	0.5269(6)	0.069	6718	0, 3010(1)	0 7262(1)	0.0002(1)	0.050
C55	0 3599(6)	1.0647(6)	0.5208(0)	0.063	0713	0.4445(1)	0.7636(1)	0.9241(1)	0.050
~~~~	0.0209(6)	1.1422(5)	0.3485(5)	0.060	0.24	0.6190(1)	0.7897(1)	0.9003(1)	0.050
cei	-0.0325(0)	1 2222(2)	0.0915(5)	0.080	COA	0.5010(1)	0.7097(1)	0.0098(1)	0.050
C01	-0.0325(7)	1.2223(0)	0.0317(7)	0.079	COLA	0.0112(1)	0.7785(1)	0.0715(1)	0.050
C92	0.1221(7)	1.1959(5)	0.9393(1)	0.074	Caza	0.4509(1)	0.1001(1)	0.0000(1)	0.050

Tab. 3. Atomkoordinaten der Verbindung 4 (Wasserstoffatome nicht verfeinert).  $U_{iq} = (U_1 U_2 U_3)^{1/3}$ , wobei  $U_i$  die Eigenwerte der Matrix  $U_{ij}$  sind

Tab. 4. Ausgewählte Bindungsabstände und -winkel in 4

Bindungsabstände in (Å)		Bindungswinkel in ( ⁰ )													
 Мо	-	Pd2	2.803(1)	C3	-	Мо	-	C2	84.1(3)	C42	-	Pdl	-	cı	123.7(2)
Mo	-	Pd1	2.781(1)	C3	-	Mo	-	C1	108.1(3)	C42	-	Pdl	-	Pl	95.7(2)
Mo	-	<b>C</b> 1	2.041(7)	C3	-	Mo	-	Pd1	93.4(2)	C42	-	Pdl	-	Pd2	85.4(2)
Мо	-	C2	1.974(7)	C3	-	Mo	-	Pd2	54.6(2)	C42	-	Pd1	-	Mo	145.7(2)
Мо	-	C3	1.976(8)	C2	-	Mo	-	Cl	107.4(3)	C2	-	Pdl	-	Cl	90.3(2)
Mo	-	C51	2,300(8)	C2	-	Mo	-	Pdl	55.4(2)	C2	-	Pdl	-	Pl	94.9(2)
Mo	-	C52	2.327(7)	C2	-	Mo	-	Pd2	93.5(2)	C2	-	Pdl	-	Pd2	90.2(2)
Мо	-	C53	2.358(8)	Cl	-	Mo	-	Pd1	52.8(2)	C2	-	Pd1	-	Мо	44.4(2)
Mo	-	C54	2.373(9)	Cl	-	Mo	-	Pd2	54.1(2)	Cl	-	Pdl	-	<b>P1</b>	118.2(2)
Мо	-	C55	2.355(8)	Pd1	-	Mo	-	Pd2	56.6(1)	Cl	-	Pdl	-	Pd2	55.5(2)
Pd2	-	Pd1	2.646(1)	C45	-	Pd2	-	СЗ	139.1(3)	Cl	-	Pd1	-	Мо	46.4(2)
Pd2	-	P2	2.371(2)	C45	-	Pd2	-	Cl	118.2(3)	Pl	-	Pdl	-	Pd2	172.0(1)
Pd2	-	Cl	2.304(7)	C45	-	Pd2	-	P2	97.4(2)	Pl	-	Pd1	-	Mo	118.1(1)
Pd2	-	C3	2.311(8)	C45	-	Pd2	-	Pdl	85.1(2)	Pd2	-	Pdl	-	Мо	62.1(1)
Pd2	-	C45	2.248(9)	C45	-	Pd2	-	Mo	146.0(2)	01	-	Cl	-	Pdl	118.3(5)
Pdl	-	Pl	2.363(2)	С3	-	Pd2	-	Cl	89.6(3)	01	-	Cl	-	Pd2	119.2(5)
Pdı	-	Cl	2.243(6)	C3	-	Pd2	-	P2	95.1(2)	01	-	Cl	-	Мо	155.5(6)
Pdl	-	C2	2.321(7)	C3	-	Pd2	-	Pd1	89.8(2)	Pdl	-	Cl	-	Pd2	71.2(2)
Pd1	-	C42	2.213(7)	C3	-	Pd2	-	Mo	44.2(2)	Pd1	-	Cl	-	Мо	80.8(2)
01	-	C1	1,167(8)	Cl	-	Pd2	-	P2	117.0(2)	Pd2	-	Cl	-	Мо	80.1(2)
02	-	C2	1.175(8)	Cl	-	Pd2	-	Pdl	53.3(1)	02	-	C2	-	Pdl	116.7(5)
03	-	C3	1.17 (1)	Cl	-	Pd2	-	Mo	45.8(2)	02	-	C2	-	Мо	163.1(6)
C41	-	C42	1.42 (1)	P2	-	'Pd2	-	Pd1	169.3(1)	Pdl	-	C2	-	Мо	80.3(2)
C41	-	C45	1.39 (1)	P2	-	Pd2	-	Мо	116.7(1)	03	-	C3	-	P <b>d2</b>	116.8(7)
C42	-	C43	1.42 (1)	Pd1	-	Pd2	-	Mo	61.3(1)	03	-	C3	-	Mo	161.9(8)
C43	-	C44	1.35 (1)	C42	-	Pd1	-	C2	132.6(3)	Pd2	-	C3	-	Мо	81.2(3)
C44	-	C45	1.42 (1)												
C51	-	C52	1.42 (1)												
C51	-	C55	1.40 (1)												
C52	-	C53	1.38 (1)												
C53	-	C54	1.39 (1)												
C54	-	C55	1.42 (1)												

ist auch für den Vierkerncluster **23b** (s. u.) bekannt¹²); semi-verbrückende CO-Liganden zwischen Palladium und einem Heterometallatom M liegen außerdem in einigen mit 4 strukturell nicht verwandten Mehrkernverbindungen mit M =Mn, Cr und Mo vor^{14,15}).

Die Kohlenstoffatome C2 und C3 befinden sich 1.36(2) bzw. 1.35(2) Å unterhalb, das Kohlenstoffatom C1 1.49(2) Å oberhalb der Ebene, die durch die drei Metallatome definiert ist. Geringfügig unterschiedliche Öffnungswinkel der verbrückenden Carbonylgruppen führen zu abweichenden Pd-Mo-Abständen im Cluster. Diese Asymmetrie wird auch in den ungleichen Molybdän-Kohlenstoff-Bindungslängen Mo-C51 bis Mo-C55 widergespiegelt. Es ist außerdem darauf hinzuweisen, daß sämtliche Pd-C_{CO}-Abstände erheblich höhere Werte als in anderen Carbonylpalladium(I)-Komplexen aufweisen (1.90-1.99 Å)¹⁶, in denen die CO-Liganden symmetrisch zwischen zwei Palladiumatomen angeordnet sind.

Wie bereits in der Verbindung ( $\mu$ -C₅H₅)₂Pd₂(PEt₃)₂ von uns beschrieben¹⁷, liegt der die beiden Palladiumatome überbrückende Cyclopentadienyl-Ligand als "Allyl-en"-System vor. Ein deutlicher Hinweis hierauf ist der vergleichsweise kurze Abstand C43-C44 (1.35 Å), verbunden mit nicht-bindenden Abständen dieser Kohlenstoffatome zu beiden Palladiumatomen. Diese sind jeweils an C42 und C45 (Pd1-C42 2.213(7)Å, Pd2-C45 2.248(9)Å) gebunden. Die Abstände des zwischen C42 und C45 befindlichen Kohlenstoffatoms C41 zu den Pd-Atomen sind verschieden (Pd1-C41 2.655 Å, Pd2-C41 2.728 Å), wobei auch hier der längere Abstand vom Atom Pd2 ausgeht. Die im Bereich der  $C_{5}H_{5}MO(CO)_{3}$ -Gruppe beobachtete Asymmetrie schlägt sich also auch in der Bindung des verbrückenden Cyclopentadienylrings an die beiden Palladiumatome nieder. Während der Schwerpunkt des Cyclopentadienylrings äquidistant zu beiden Pd-Atomen ist, hat das Gerüst des Rings eine deutliche Drehung um diesen Schwerpunkt erfahren. Als Folge davon ist das gesamte Schweratom-Gerüst um die Verbindungslinie der Schwerpunkte beider Fünfringe, wie aus Abb. 1 zu ersehen ist, chiral verdrillt.

Der Abstand Pd1 – Pd2 (2.646(1) Å) liegt in dem für andere Komplexe mit der Baueinheit Pd₂(PR₃)₂ typischen Bereich^{6c)}. Die zwei Cyclopentadienylringe sind nahezu parallel (Diederwinkel 9.64°) und umschließen sandwichartig das Pd₂Mo-Clustergerüst. Die Diederwinkel zwischen der Clusterebene E3 (Pd1, Pd2, Mo) und den Ringebenen C41 – C45 und C51 – C55 betragen 85.6 bzw. 76.2°.

#### Allylverbrückte Pd₂M-Dreikerncluster 15-18

Ähnlich wie die Dreikerncluster 3-10 sind auch die allylverbrückten Analoga 15-18 durch Umsetzung der Zweikernkomplexe 14a-c mit Na[C₅H₅M(CO)₃] bzw. Na[Co(CO)₄] erhältlich. Allerdings benötigt man längere Reaktionszeiten (ca. 24 h). Da für M = Mo und W die entsprechende Hydridometallverbindung C₅H₅M(CO)₃H als Nebenprodukt entsteht, wird ein vollständiger Umsatz von 14a-c nur bei Verwendung eines geringen Überschusses (ca. 20%) an Na-[C₅H₅M(CO)₃] erreicht. Die Trennung von 16, 17 und C₅H₅M(CO)₃H gelingt durch Säulenchromatographie. 15-18 sind tieffarbige Feststoffe, die in kristalli-

sierter Form wenig luftempfindlich sind und in ihrer Löslichkeit den Verbindungen 3-10 ähneln. In Lösung neigen auch sie zu Zersetzung.



Tab. 5. ¹H- und ³¹P-NMR-Daten der Verbindungen **15–18** in  $[D_6]$ Benzol (¹H:  $\delta$  in ppm gegen TMS int.; ³¹P:  $\delta$  in ppm gegen 85% H₃PO₄ ext.; J und N in Hz)

	15	16	17	18
δ(C ₅ H ₅ M)	4.78 (s)	5.26 (s)	5.23 (s)	
$\delta(\mathbf{H}_{syn})$	3.53 (vt)	3.66 (vt)	3.73 (vt)	3.61 (vt)
N ,	12.5	12.0	11.6	10.8
δ(H _{anti} )	1.81 (bs)	1.68 (bs)	1.70 (bs)	1.87 (bs)
δ(CH ₁ )	1.23 (t)	1.29 (t)	1.36 (t)	1.32 (t)
J(PH)	3.5	3.9	4.0	3.0
$\delta(\mathbf{PCHCH}_{1})$	2.10 (m) ^{a)}	2.13 (m) ^{a)}	2.10 (m) ^{a)}	2.28 (m) ^{a)}
δ(PCHCH	1.24 (dvt) ^{b)}	1.30 (dvt) ^{b)}	1.23 (dvt) ^{b)}	1.23 (dvt) ^{b)}
Ň	13.8	14.6	14.0	14.2
J(HH) ^{c)}	7.2	7.0	7.4	7.5
δΡ	39.9 (s)	40.0 (s)	41.1 (s)	40.4 (s)

^{a)} Nach ³¹P-Entkopplung Septett.  $-^{b)}$  Dublett von virtuellen Tripletts, nach ³¹P-Entkopplung Dublett.  $-^{c'}$  Aus ³¹P-entkoppelten Spektren.

Die in Gl. (8) und (9) für die Komplexe 15–18 angegebenen Strukturvorschläge werden durch die spektroskopischen Daten gestützt. In den IR-Spektren von 15–17 beobachtet man drei v(CO)-Banden bei ca. 1840, 1770 und 1725 cm⁻¹, die den  $\mu_2$ - und  $\mu_3$ -CO-Liganden entsprechen. Das Spektrum von 18 ist demjenigen von 9 sehr ähnlich. Die ¹H-NMR-Spektren (Tab. 5) zeigen neben den Signalen für die Phosphan- und Cyclopentadienylliganden (letztere nur für 15–17) stets ein virtuelles Triplett für die H_{syn}-, ein verbreitertes Singulett für die H_{anti}- und ein weiteres virtuelles Triplett für die CH₃-Allyl-Protonen. Nach ³¹P-Entkopplung gehen die virtuellen Tripletts in Singuletts über. Das Auftreten nur jeweils eines Signals für die  $H_{syn}$ - und  $H_{anti}$ -Protonen und die Triplett-Aufspaltung des CH₃-Protonensignals bestätigen, daß die Allylgruppe symmetrisch an die Pd₂-Einheit gebunden ist.

Die Methylgruppen der Triisopropylphosphan-Liganden von 15–18 sind aufgrund der Molekülsymmetrie nicht äquivalent und sollten daher zwei ¹H-NMR-Signale ergeben, die jedoch nicht mehr aufgelöst werden können. Im ¹³C-Spektrum von 18 sind die zwei Signale für die PCHCH₃-Kohlenstoffatome jedoch gut zu erkennen (Unterschied 0.1 ppm) (für weitere Angaben siehe Exp. Teil).

#### Versuche zur Darstellung heterometallischer Vierkerncluster

Nach der Verwirklichung der in Gl. (10) schematisch gezeigten Reaktionsfolge, die ausgehend von den Verbindungen ( $\mu$ -C₅H₅)₂Pd₂(PR₃)₂ zu den Dreikernclustern 3–11 führte, reizte uns der Versuch, auch den zweiten verbrückenden Cyclopentadienylliganden durch ein Carbonylmetallat-Anion zu ersetzen. Das in Gl. (11) skizzierte Synthesekonzept erschien uns insofern realisierbar, als *Braunstein* et al.¹²⁾ bereits Vierkernkomplexe der Zusammensetzung [C₅H₅M(CO)₃]₂Pd₂(PR₃)₂ isoliert und auch strukturell charakterisiert hatten. Uns interessierte vor allem, ob auch entsprechende Heterometallcluster mit *drei* verschiedenen Metallen (M, M' und zweimal Pd) dargestellt werden können, die nach der *Braunstein*-Methode nicht zugänglich sind. Ein direkter Austausch von ( $\mu$ -C₅H₅) in 3–8 gegen [C₅H₅M(CO)₃] gelingt nicht.



Der als Versuchsobjekt gewählte  $Pd_2Mo$ -Komplex 4 reagiert mit einer äquimolaren Menge Essigsäure nur sehr unvollständig. Erst mit einem ca. 15fachen Überschuß an  $CH_3CO_2H$ findet eine vollständige Umsetzung statt, die allerdings zu einem Produktgemisch von 19 und  $C_5H_5Mo(CO)_3H$  (Verhältnis ca. 1:2) führt. Beide Verbindungen lassen sich sehr schlecht voneinander trennen, so daß für den Dreikerncluster 19 nur spektroskopische Daten (siehe Exp. Teil), jedoch keine Elementaranalysen vorliegen. Stärkere Säuen wie z. B.  $CF_3CO_2H$ bewirken eine Zersetzung von 4, während schwächere Säuren wie z. B. Pivalinsäure nicht mit dem Komplex reagieren.

Die Reaktionen von 4 und 6-8 mit Me₃SiCl ergeben zwar ein günstigeres Verhältnis von 20 bzw.  $21a-c zu C_5H_5M(CO)_3X (X = H, Cl)$ , doch Versuche zur Reindarstellung der Dreikerncluster verliefen auch in diesem Fall unbefriedigend. Die noch geringe Mengen Verunreinigungen enthaltenden Verbindungen 20 und 21a-c (für spektroskopische Daten siehe Exp. Teil) können jedoch mit Na-







 $[C_5H_5M(CO)_3]$  umgesetzt werden und liefern nach chromatographischer Reinigung die Vierkerncluster 22 und  $23a-c^{12}$  analysenrein in Ausbeuten von 40-60%.

Versuche, zu 23 analoge Vierkernkomplexe mit zwei verschiedenen  $[C_5H_5M-(CO)_3]$ -Fragmenten aufzubauen, führten lediglich zu Produktgemischen. Ausgehend von 21a und Na $[C_5H_5Mo(CO)_3]$  entstehen z. B. die Verbindungen 23a, 23b und 24 im Verhältnis 43:23:34 (NMR-spektroskopisch bestimmt), während bei entsprechender Umsetzung von 21b mit Na $[C_5H_5Cr(CO)_3]$  das Verhältnis 23a:23b:24 = 23:36:41 ist. Die Eigenschaften der in Schema 1 angegebenen, strukturanalogen Vierkerncluster sind außerordentlich ähnlich, so daß alle Bemühungen zur Trennung (u. a. wiederholte Chromatographie mit längeren Säulen) ohne Erfolg blieben. Die Reaktionen des nach Gl.(13) erhaltenen Gemisches von

<u>Schema 1</u>. [Cr] =  $C_5H_5Cr(CO)_3$ ; [Mo] =  $C_5H_5Mo(CO)_3$ 



20 und  $C_5H_5Mo(CO)_3H$  mit Na[ $C_5H_5M(CO)_3$ ] (M = Cr, W) ergeben die Verbindungen 22 und 25 a, b (siehe Schema 2), wobei das Verhältnis [Mo₂Pd₂]: [MMoPd₂] ungefähr 1:2 beträgt. Die IR- und NMR-Daten von 22-25 – soweit sie eindeutig zugeordnet werden können – sind in Tab. 6 angegeben (für 23 siehe auch Lit.¹²). Bezüglich des Bildungsmechanismus der Vierkerncluster nehmen wir in Übereinstimmung mit früheren Überlegungen¹² an, daß bei der Einwirkung der Anionen [ $C_5H_5M(CO)_3$ ]⁻ auf die Dreikernkomplexe 20 bzw. 21 ein Elektronentransfer stattfindet und sich dadurch intermediär Radikale bilden, die sich dann

zu den nachgewiesenen Produkten vereinigen. Die Existenz von  $C_5H_5M(CO)_3$  und heterobimetallischen Radikalen mit der Baueinheit  $C_5H_5M(CO)_3$  ist aus früheren Untersuchungen bekannt^{18,19}.

Tab. 6. ¹H- und ³¹P-NMR-Daten der Verbindungen **22**, **24** und **25a**, **b** in [D₆]Benzol (¹H:  $\delta$  in ppm gegen TMS int.; ³¹P:  $\delta$  in ppm gegen 85% H₃PO₄ ext.; alle Signale Singuletts)

	δ(C₅H₅Mo)	$\delta(C_5H_5M)$	δ(P)
22 ^{a)} 24 ^{b)} 25a ^{b)}	5.02 4.90 4.98	4.53 4.60	44.4 19.7 45.5 46.7

^{a)}  $\delta$ (PCH) = 2.20 (m);  $\delta$ (PCHCH₃) = 1.17 (dvt), N = 12.8, J(HH) = 6.8 Hz. - ^{b)} Signale der Phosphanprotonen nicht genau zuzuordnen, da Überlappung mit PR₃-Signalen von **23a, b** bzw. **22** (siehe Text).

#### Elektronenbilanz der Dreikerncluster

Die Heterometall-Verbindungen 3-11 und 15-21 können als 44-Elektronen-Cluster mit drei Metall-Metall-Bindungen beschrieben werden, in denen formal eine dikationische  $[Pd_2(PR_3)_2]^{2+}$ -Einheit mit zwei Pd(I)-Zentren von zwei anionischen Bauelementen X⁻ und  $[ML_n]^-$  überbrückt wird. Sowohl die an die Pd-Pd-Bindung koordinierten Brückenliganden X⁻  $(C_3H_5^-, 2-MeC_3H_4^-, RCO_2^-, CI^-)$  als auch die Carbonylmetallat-Anionen  $[ML_n]^ ([C_5H_5M(CO)_3]^-, [Co(CO)_4]^-, [V(CO)_6]^-)$  fungieren als 4-Elektronen-Donoren⁷⁾ und bewirken eine 16-Elektronen-Konfiguration an jedem Palladium. In analoger Weise repräsentieren die Vierkernkomplexe 22-25 58-Elektronen-Cluster, in denen ein planares  $M_2Pd_2$ - bzw. MM'Pd₂-Gerüst mit 5 Metall-Metall-Bindungen vorliegt¹²⁾.

Die Bindungsverhältnisse in den Dreikernclustern können auch auf der Grundlage der von  $Wade^{20}$  und  $Rudolph^{21}$  entwickelten Regeln interpretiert werden. Danach stellen die drei Metallatome in den Verbindungen 3–11 und 15–21 insgesamt 8 Elektronen (jedes Pd-Atom eins und jedes M-Atom sechs) für die Clusterbildung zur Verfügung, wie es für eine *closo*-Verbindung verlangt ist.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die großzügige Unterstützung mit Sachmitteln sowie den Firmen DEGUSSA und Wacker für wertvolle Chemikalienspenden. Herrn Dr. W. Buchner und Herrn C. P. Kneis sind wir für NMR-Messungen, Herrn Priv.-Doz. Dr. F. Kreißl, TU München, für die FD-MS-Spektren und Frau U. Neumann sowie Fräulein R. Schedl für die Durchführung von Elementaranalysen zu Dank verbunden. Ein besonderer Dank gilt Herrn Prof. Dr. P. Hofmann, Technische Universität München, der uns über die Ergebnisse der von ihm durchgeführten MO-Rechnungen vor der Veröffentlichung informierte.

#### **Experimenteller** Teil

Alle Arbeiten wurden unter nachgereinigtem Stickstoff und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Ausgangsverbindungen 1⁸,  $(C_5H_5)_2Pd_2$ - $(PEt_3)_2^{17}$ , 14a- $c^{22,23}$ , Na[C₅H₅M(CO)₃] (M = Cr, Mo, W)²⁴, Na[Co(CO)₄]²⁵, Na[Mn-

 $(CO)_5]^{25}$ ,  $[Na(diglyme)_2][V(CO)_6]^{26}$  und  $C_5H_5Mo(CO)_3SiMe_3^{27}$  wurden nach Literaturangaben dargestellt. Für Herstellung von 3 siehe Lit.⁸.

μ-Acetato-μ-(cyclopentadienyl)-bis(triethylphosphan)dipalladium(1)(Pd-Pd) (2a): Zu einer Suspension von 870 mg (1.50 mmol) (C₃H₃)₂Pd₂(PEt₃)₂ in 10 ml Toluol tropft man bei -78 °C 86 μl (1.50 mmol) Eisessig. Unter kräftigem Rühren erwärmt man langsam auf Raumtemp., rührt noch 30 min, zieht das Lösungsmittel ab, trocknet den Rückstand i. Hochvak., extrahiert ihn auf einer Fritte mehrmals mit Pentan, engt die Extraktionslösung auf wenige ml ein und läßt einige Tage bei -78 °C stehen. Der gebildete orangegelbe Feststoff wird abfiltriert, mit kaltem Pentan gewaschen und i. Hochvak. getrocknet. Ausb. 730 mg (85%). - ¹H-NMR (C₆D₆): C₅H₅  $\delta$  = 5.52 (t), J(PH) = 2.3 Hz; CH₃CO₂ 2.03 (s); PCH₂ 1.52 (m); PCH₂CH₃ 1.02 (dvt), N = 16.8, J(HH) = 7.4 Hz.

C₁₉H₃₈O₂P₂Pd₂ (573.3) Ber. C 39.81 H 6.68 Gef. C 39.61 H 6.72

 $\mu$ -Chloro- $\mu$ -(cyclopentadienyl)-bis(triethylphosphan)dipalladium(I)(Pd-Pd) (2b): Zu einer Suspension von 870 mg (1.50 mmol) (C₃H₃)₂Pd₂(PEt₃)₂ in 10 ml Toluol tropft man bei -78 °C 190  $\mu$ l (1.50 mmol) Me₃SiCl. Unter kräftigem Rühren erwärmt man langsam auf Raumtemp., rührt noch 30 min, filtriert und engt die Lösung auf ca. 1 ml ein. Nach Zugabe von 10 ml Pentan und 24 h Stehenlassen bei -78 °C bilden sich dunkelrote Kristalle, die abfiltriert, mehrmals mit kaltem Pentan gewaschen und i. Hochvak. getrocknet werden. Ausb. 680 mg (82%). - ¹H-NMR (C₆D₆): C₅H₅  $\delta$  = 5.43 (t), J(PH) = 2.2 Hz; PCH₂ 1.40 (m); PCH₂CH₃ 0.93 (dvt), N = 16.2, J(HH) = 7.8 Hz.

C17H35ClP2Pd2 (549.6) Ber. C 37.15 H 6.42 Gef. C 37.32 H 6.24

 $\mu$ -Bromo- $\mu$ -(cyclopentadienyl)-bis(triethylphosphan)dipalladium(I)(Pd-Pd) (2c): Analog wie für 2b beschrieben, ausgehend von 580 mg (1.00 mmol) (C₅H₅)₂Pd₂(PEt₃)₂ und 132  $\mu$ l (1.00 mmol) Me₃SiBr. Dunkelrote Kristalle. Ausb. 470 mg (81%). - ¹H-NMR (C₆D₆): C₅H₅  $\delta$  = 5.40 (t); J(PH) = 2.0 Hz; PCH₂ 1.33 (m), PCH₂CH₃ 0.98 (dvt), N = 17.2, J(HH) = 7.6 Hz.

 $C_{17}H_{35}BrP_2Pd_2$  (594.0) Ber. C 34.37 H 5.94 Gef. C 34.51 H 6.13

3-8 (s. nachstehend) sind in polaren Solvenzien wie Methanol, Aceton, Chloroform, Methylenchlorid und Ether sowie in Benzol und Toluol gut, in Pentan oder Hexan jedoch nur wenig löslich.

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -(cyclopentadienyl)-bis(triisopropylphosphan)dipalladium]molybdän(2Mo-Pd, 1Pd-Pd) (4): Zu einer Lösung von 31 mg (0.10 mmol) C₅H₅Mo(CO)₅SiMe₃ in 0.5 ml C₆D₆ gibt man bei Raumtemp. 70 mg (0.10 mmol) 1, schüttelt mehrmals kräftig durch und zentrifugiert ab. Das ¹H-NMR-Spektrum der Lösung zeigt, daß nahezu quantitativ 4 entstanden ist (für NMR-Daten siehe Lit.⁸).

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -(cyclopentadienyl)-bis(triisopropylphosphan)dipalladium/wolfram(2W - Pd, 1Pd - Pd) (5): Eine Lösung von 490 mg (0.70 mmol) 1 in 5 ml Toluol wird portionsweise mit 250 mg (0.70 mmol) Na[C₅H₅W(CO)₃] versetzt. Nach 12 h Rühren bei Raumtemp. wird filtriert, der Rückstand zuerst mit Toluol und dann mehrmals mit Hexan gewaschen und das Filtrat auf ca. 1 ml eingeengt. Nach Zugabe von 10 ml Pentan und Abkühlen auf -30 °C bilden sich rotbraune Kristalle, die aus Toluol/Pentan umkristallisiert werden. Ausb. 490 mg (75%), Zers.-P. ab 58 °C. – FD-MS: m/z = 930 (M⁺). – ¹³C-NMR (C₆D₆): C₅H₅Pd₂  $\delta = 95.9$  (s); C₅H₅W 90.1 (s); PCHCH₃ 25.2 (vt), N = 6.7 Hz; PCHCH₃ 20.0 (s); Signal(e) der CO-Gruppen wegen beginnender Zersetzung bei längerer Meßdauer nicht zu beobachten. – IR (KBr): v( $\mu_2$ -CO) 1843, 1773, v( $\mu_3$ -CO) 1729 cm⁻¹.

 $\begin{array}{c} C_{31}H_{52}O_{3}P_{2}Pd_{2}W \ (931.3) \\ Gef. \ C \ 40.14 \\ H \ 5.67 \\ Pd \ 22.85 \\ W \ 19.74 \\ Gef. \ C \ 40.14 \\ H \ 5.67 \\ Pd \ 22.67 \\ W \ 19.90 \\ \end{array}$ 

Chem. Ber. 119 (1986)

÷

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -(cyclopentadienyl)-bis(triethylphosphan)dipalladium]chrom(2 Cr – Pd, 1 Pd–Pd) (6): Ausgehend von 297 mg (0.50 mmol) 2c und 110 mg (0.50 mmol) Na[C₅H₅Cr(CO)₃], analog wie für 5 beschrieben. Dunkelrote Kristalle. Ausb. 298 mg (83%), Zers.-P. ab 74°C. – IR (KBr): v( $\mu_2$ -CO) 1828, 1771, v( $\mu_3$ -CO) 1737 cm⁻¹.

C25H40CrO3P2Pd2 (715.3) Ber. C 41.98 H 5.64 Gef. C 42.24 H 5.92

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -(cyclopentadienyl)-bis(triethylphosphan)dipalladium/molybdän(2Mo-Pd, 1Pd-Pd) (7): Ausgehend von 297 mg (0.50 mmol) 2c und 135 mg (0.50 mmol) Na[C₃H₃Mo(CO)₃], analog wie für 5 beschrieben. Nur 1 h Rühren bei Raumtemp. ist erforderlich. Rotbraune Kristalle. Ausb. 323 mg (85%), Zers.-P. ab 76°C. – IR (KBr): v( $\mu_2$ -CO) 1830, 1770, v( $\mu_3$ -CO) 1738 cm⁻¹.

C₂₅H₄₀MoO₃P₂Pd₂ (759.3) Ber. C 39.55 H 5.31 Gef. C 39.42 H 5.37

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -(cyclopentadienyl)-bis(triethylphosphan)dipalladium/wolfram(2W-Pd, IPd-Pd) (8): Ausgehend von 297 mg (0.50 mmol) 2c und 178 mg (0.50 mmol) Na[C₅H₅W(CO)₃], analog wie für 5 beschrieben. Rotbraune Kristalle. Ausb. 347 mg (82%), Zers.-P. ab 84°C. – IR (KBr): v( $\mu_2$ -CO) 1825, 1760, v( $\mu_3$ -CO) 1732 cm⁻¹.

C₂₅H₄₀O₃P₂Pd₂W (847.2) Ber. C 35.44 H 4.76 Gef. C 35.91 H 5.07

Di- $\mu$ -carbonyl-dicarbonyl-triangulo- $[\mu$ -(cyclopentadienyl)-bis(triisopropylphosphan)dipalladium]cobalt(2Co-Pd, 1Pd-Pd) (9): Ausgehend von 490 mg (0.70 mmol) 1 und 136 mg (0.70 mmol) Na[Co(CO)₄], analog wie für 5 beschrieben. Dunkelviolette Kristalle. Ausb. 420 mg (78%), Zers.-P. ab 87°C. - ¹³C-NMR (C₆D₆): C₃H₃Pd₂  $\delta$  = 95.2 (s); PCHCH₃ 25.6 (vt), N = 6.6 Hz; PCHCH₃ 19.9 (s); Signal(e) der CO-Gruppen wegen beginnender Zersetzung bei längerer Meßdauer nicht zu beobachten. - IR (KBr): v(CO) 2029, 2011, 1990, 1961, v( $\mu_2$ -CO) 1858 cm⁻¹.

 $\begin{array}{c} C_{27}H_{47}CoO_4P_2Pd_2 \ (769.3) \\ Gef. \ C \ 42.15 \\ H \ 5.82 \\ Co \ 7.66 \\ Pd \ 27.66 \\ Gef. \ C \ 41.53 \\ H \ 5.82 \\ Co \ 7.61 \\ Pd \ 26.97 \\ \end{array}$ 

Di- $\mu$ -carbonyl-dicarbonyl-triangulo- $[\mu$ -(cyclopentadienyl)-bis(triethylphosphan)dipalladium]cobalt(2Co-Pd, 1Pd-Pd) (10): Ausgehend von 297 mg (0.50 mmol) 2c und 97 mg (0.50 mmol) Na[Co(CO)₄], analog wie für 5 beschrieben. Braunrote Kristalle. Ausb. 288 mg (84%), Zers.-P. ab 72°C. - ¹³C-NMR (C₆D₆):  $\mu$ -CO  $\delta$  = 228.1 (bs); CO 193.8 (bs); C₃H₃Pd₂ 94.2 (s); PCH₂CH₃ 18.5 (vt), N = 7.6 Hz; PCH₂CH₃ 8.4 (s). - IR (KBr): v(CO) 1988, 1934, v( $\mu_2$ -CO) 1882, 1847 cm⁻¹.

C₂₁H₃₅CoO₄P₂Pd₂ (685.2) Ber. C 36.81 H 5.15 Gef. C 36.91 H 5.07

Di- $\mu$ -carbonyl-tetracarbonyl-triangulo- $[\mu$ -(cyclopentadienyl)-bis(triethylphosphan)dipalladium]vanadium(2 V-Pd, 1 Pd-Pd) (11): Ausgehend von 297 mg (0.50 mmol) 2c und 255 mg (0.50 mmol) [Na(diglyme)₂][V(CO)₆], analog wie für 5 beschrieben. Rubinrote Kristalle. Ausb. 279 mg (76%), Zers.-P. ab 70°C. - ¹³C-NMR (C₆D₆): C₅H₅Pd₂  $\delta$  = 97.9 (s); PCH₂CH₃ 17.1 (vt), N = 9.0 Hz; PCH₂CH₃ 7.8 (s); Signal(e) der CO-Gruppen wegen beginnender Zersetzung bei längerer Meßdauer nicht zu beobachten. - IR (KBr): v(CO) 2001, 1994, 1955, 1943, 1928, 1918, v( $\mu$ ₂-CO) 1801 cm⁻¹.

> C₂₃H₃₅O₆P₂Pd₂V (733.2) Ber. C 37.68 H 4.81 Pd 29.02 V 6.95 Gef. C 37.61 H 4.72 Pd 29.20 V 7.11

Reaktionen von 1 mit Na[ $C_3H_3Fe(CO)_2$ ] bzw.  $Hg[C_3H_3Fe(CO)_2]_2$ : Zu einer Suspension von 10 mg (0.05 mmol) Na[ $C_3H_3Fe(CO)_2$ ] oder 14 mg (0.025 mmol) Hg[ $C_5H_3Fe(CO)_2$ ] in 0.5 ml [ $D_8$ ]Toluol gibt man bei  $-78^{\circ}C$  35 mg (0.05 mmol) 1, schüttelt mehrmals kräftig

durch, zentrifugiert ab und verfolgt die Reaktion ¹H-NMR-spektroskopisch. Beim Erwärmen auf ca. 40 °C ist als einziges diamagnetisches Reaktionsprodukt  $[C_5H_5Fe(CO)_2]_2$  nachweisbar. Gleichzeitig findet Zersetzung von 1 statt.

Reaktion von 1 mit  $Na[Mn(CO)_5]$ : Zu einer Suspension von 16 mg (0.07 mmol) Na[Mn(CO)₅] in 0.5 ml [D₈]Toluol gibt man bei -78 °C 50 mg (0.07 mmol) 1, schüttelt mehrmals kräftig durch, zentrifugiert ab und verfolgt die Reaktion ¹H-NMR-spektroskopisch. Beim langsamen Erwärmen auf ca. 50 °C läßt sich nur die Bildung von C₅H₅Mn(CO)₃ nachweisen.

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -(2-methylallyl)-bis(triisopropylphosphan)dipalladium]chrom(2 Cr - Pd, 1 Pd - Pd) (15): Eine Suspension von 180 mg (0.77 mmol) Na[C₅H₅Cr(CO)₃] in 10 ml Toluol wird mit 500 mg (0.77 mmol) 14a versetzt. Nach 24 h Rühren bei Raumtemp. wird filtriert, der Rückstand mehrmals mit Hexan gewaschen, das Filtrat auf ca. 1 ml eingeengt und mit 5 ml Pentan versetzt. Längeres Stehenlassen bei - 30 °C ergibt dunkelgrüne Kristalle, die aus Toluol/Pentan 1/10 umkristallisiert werden. Ausb. 480 mg (79%), Zers.-P. ab 63 °C. - FD-MS: m/z = 788 (M⁺). - ¹³C-NMR (C₆D₆): CO  $\delta = 248.7$  (bs); Allyl-C₂ 108.7 (s); C₅H₅Cr 88.3 (s); Allyl-C_{1,3} 47.5 (s); PCHCH₃ 26.0 (vt), N = 6.7 Hz; Allyl-CH₃ 24.4 (s); PCHCH₃ 20.2 (bs). - IR (KBr): v( $\mu_2$ -CO) 1833, 1769, v( $\mu_3$ -CO) 1725 cm⁻¹.

 $\begin{array}{c} C_{30}H_{54}CrO_{3}P_{2}Pd_{2} \ (789.5) \\ Gef. \ C \ 45.64 \ H \ 6.89 \ Cr \ 6.59 \ Pd \ 26.95 \\ Gef. \ C \ 45.83 \ H \ 7.23 \ Cr \ 6.64 \ Pd \ 27.02 \end{array}$ 

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -(2-methylallyl)-bis(triisopropylphosphan)dipalladium]molybdän(2Mo-Pd, IPd-Pd) (16): Eine Suspension von 250 mg (0.93 mmol) Na[C₃H₃Mo(CO)₃] in 10 ml Toluol wird mit 500 mg (0.77 mmol) 14a versetzt und 24 h bei Raumtemp. gerührt. Man filtriert, zieht das Lösungsmittel i. Vak. ab, löst den Rückstand in wenig Pentan und chromatographiert die Lösung über Kieselgel. Mit Pentan wird eine gelbe Fraktion eluiert, aus der nach Entfernen des Solvens gelbe Kristalle isoliert werden, die laut ¹H-NMR-Spektrum C₃H₃Mo(CO)₃H sind²⁴. Nachfolgendes Eluieren mit Toluol liefert eine dunkelrote Fraktion, die i. Hochvak. zur Trockne gebracht wird. Nach Umkristallisieren des Rückstands aus Pentan erhält man rubinrote Kristalle. Ausb. 270 mg (42%), Zers.-P. ab 57 °C. – An Stelle von 14a kann auch 14b oder 14c als Ausgangsverbindung verwendet werden. Ausb. an 16: 45-55%. –IR (KBr): v( $\mu_2$ -CO) 1844, 1776, v( $\mu_3$ -CO) 1734 cm⁻¹.

C₃₀H₅₄MoO₃P₂Pd₂ (833.4) Ber. C 43.23 H 6.53 Mo 11.51 Pd 25.53 Gef. C 43.06 H 6.35 Mo 11.34 Pd 25.35

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -(2-methylallyl)-bis(triisopropylphosphan)dipalladium]wolfram(2 W-Pd, 1 Pd-Pd) (17): Ausgehend von 330 mg (0.93 mmol) Na[C₅H₅W(CO)₃] und 500 mg (0.77 mmol) 14a, analog wie für 16 beschrieben. Abtrennung von C₅H₅W(CO)₃H wiederum durch Säulenchromatographie. Dunkelrote Kristalle. Ausb. 320 mg (45%), Zers.-P. ab 76°C. – FD-MS: m/z = 920 (M⁺). – IR (KBr):  $\nu(\mu_2$ -CO) 1839, 1770,  $\nu(\mu_3$ -CO) 1720 cm⁻¹.

 $\begin{array}{cccc} C_{30}H_{54}O_{3}P_{2}Pd_{2}W \ (921.4) & \mbox{Ber. C} & 39.11 & \mbox{H} & 5.91 & \mbox{Pd} & 23.10 & \mbox{W} & 19.95 \\ & \mbox{Gef. C} & 38.84 & \mbox{H} & 5.63 & \mbox{Pd} & 22.95 & \mbox{W} & 20.20 \end{array}$ 

 $Di-\mu$ -carbonyl-dicarbonyl-triangulo- $[\mu$ -(2-methylallyl)-bis(triisopropylphosphan)dipalladium]cobalt(2Co-Pd, 1Pd-Pd) (18): Eine Suspension von 150 mg (0.77 mmol) Na[Co(CO)₄] in 10 ml Toluol wird mit 500 mg (0.77 mmol) 14b versetzt und 24 h bei Raumtemp. gerührt. Man filtriert, engt das Filtrat auf ca. 1 ml ein und gibt 10 ml Pentan zu. Nach Abkühlen auf -30°C bilden sich gelbbraune Kristalle, die aus Toluol/Pentan umkristallisiert werden. Ausb. 490 mg (84%). – FD-MS: m/z = 758 (M⁺). – ¹³C-NMR (C₆D₆):  $\mu$ -CO  $\delta$  = 221.8 (bs); CO 204.7 (bs); Allyl-C₂ 104.8 (s); Allyl-C_{1.3} 48.6 (s); PCHCH₃ 25.5 (vt), N = 6.1 Hz; Allyl-CH₃ 24.7 (s); PCHCH₃ 20.0 (s) und 19.9 (s). – IR (KBr): v(CO) 2005, 1953, v( $\mu_2$ -CO) 1867 cm⁻¹.

 $C_{26}H_{49}CoO_4P_2Pd_2$  (759.4) Ber. C 41.13 H 6.50 Co 7.13 Pd 28.02 Gef. C 41.61 H 6.80 Co 7.76 Pd 27.78

Reaktion von 4 mit  $CH_3CO_2H$ : Eine Lösung von 168 mg (0.20 mmol) 4 in 5 ml Toluol wird bei -78 °C tropfenweise mit 17 µl (3.00 mmol) Eisessig versetzt und 12 h gerührt. Nach Erwärmen auf Raumtemp. werden die flüchtigen Bestandteile i. Hochvak. entfernt. Das ¹H-NMR-Spektrum (C₆D₆) des Rückstandes zeigt, daß 19 und C₅H₅Mo(CO)₃H im Verhältnis von ca. 1:2 vorliegen. Eine Trennung beider Verbindungen durch mehrfache Umkristallisation aus Pentan oder Sublimation (bei  $5 \cdot 10^{-6}$  Torr und  $25 \cdots 50$  °C) mißlingt. Chromatographie der Lösung des Produktgemisches in Pentan an Kieselgel oder Al₂O₃ führt zu rascher Zersetzung. - ¹H-NMR von 19 (C₆D₆): C₅H₅Mo  $\delta = 5.16$  (s); CH₃CO₂ 1.67 (s); PCH 2.20 (m); PCHCH₃ 1.20 (dvt), N = 13.8, J(HH) = 6.8 Hz.

Reaktion von 4 mit  $Me_3SiCl$ : Durchführung analog wie bei der Reaktion von 4 mit CH₃CO₂H, ausgehend von 253 mg (0.30 mmol) 4 und 570 µl (4.50 mmol) Me₃SiCl. Man erhält ein Produktgemisch von 20 und C₃H₃Mo(CO)₃H (Verhältnis ca. 3:1), das mit den oben angeführten Methoden nicht zu trennen ist. – ¹H-NMR von 20 (C₆D₆): C₅H₅Mo  $\delta$  = 5.02 (s); PCH 2.12 (m); PCHCH₃ 1.20 (dvt), N = 13.4, J(HH) = 6.8 Hz. – IR von 20 (KBr): v(CO) = 1842, 1798, 1774 cm⁻¹.

Reaktionen von 6, 7 und 8 mit  $Me_3SiCl$ : Eine Lösung von 0.30 mmol 6, 7 oder 8 in 5 ml Toluol wird bei -78 °C tropfenweise mit 570 µl (4.50 mmol)  $Me_3SiCl$  versetzt und 12 h gerührt. Nach Erwärmen auf Raumtemp. wird das Lösungsmittel und der Überschuß an  $Me_3SiCl$  i. Hochvak. entfernt und der Rückstand 5mal mit je 10 ml Pentan extrahiert. Die Nebenprodukte  $C_3H_3M(CO)_3H$  und  $C_5H_3M(CO)_3Cl$  können so nahezu vollständig entfernt werden. Man erhält einen dunkelgrünen (21a) bzw. violetten Feststoff (21b, c), der aus Aceton/Ether (1:3) umkristallisiert wird. Die Analysenwerte (C, H) weichen auch nach wiederholter Umkristallisation um ca. 5-10 Relativprozente von den für 21a-c berechneten ab. Ausb. 60-70% (bez. auf 6-8).

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -chloro-bis(triethylphosphan)dipalladium]chrom(2 Cr – Pd, 1 Pd – Pd) (21a): ¹H-NMR (C₆D₆): C₅H₅Cr  $\delta$  = 4.50 (s); PCH₂ 1.60 (m); PCH₂CH₃ 0.98 (tvt), N = 16.0, J(HH) = 7.6 Hz. – ³¹P-NMR (C₆D₆):  $\delta$  = 20.8 (s). – IR (KBr): v(CO) = 1835, 1792, 1768 cm⁻¹.

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -chloro-bis(triethylphosphan)dipalladium]molybdän(2 Mo – Pd, 1 Pd – Pd) (21 b): ¹H-NMR (C₆D₆): C₅H₅Mo  $\delta$  = 4.97 (s); PCH₂ 1.62 (m); PCH₂CH₃ 1.02 (tvt), N = 15.8, J(HH) = 7.5 Hz. - ³¹P-NMR (C₆D₆):  $\delta$  = 19.1 (s). – IR (KBr): v(CO) = 1842, 1798, 1771 cm⁻¹.

 $\mu_3$ -Carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)-triangulo-[ $\mu$ -chloro-bis(triethylphosphan)dipalladium]wolfram(2 W – Pd, 1 Pd – Pd) (21 c): ¹H-NMR (C₆D₆): C₅H₅W  $\delta$  = 4.97 (s); PCH₂ 1.68 (m); PCH₂CH₃ 1.00 (tvt), N = 15.6, J(HH) = 7.4 Hz. - ³¹P-NMR (C₆D₆):  $\delta$  = 16.9 (s). - IR (KBr): v(CO) = 1838, 1790, 1767 cm⁻¹.

ditriangulo- $\mu$ -[Bis(triisopropylphosphan)dipalladium]-bis[ $\mu_3$ -carbonyl-di- $\mu$ -carbonyl-(cyclopentadienyl)molybdän](4 Mo – Pd, 1 Pd – Pd) (22): Eine Lösung von 200 mg des Gemisches von 20 und C₅H₅Mo(CO)₃H (Verhältnis ca. 3:1) in 5 ml Toluol wird bei Raumtemp. portionsweise mit 73 mg (0.27 mmol) Na[C₅H₅Mo(CO)₃] versetzt und 12 h bei Raumtemp.

gerührt. Die Lösung wird filtriert und über Kieselgel chromatographiert. Mit Pentan und Toluol/Pentan (1:10) werden zunächst zwei gelbe Zonen (1.  $[C_5H_5Mo(CO)_3]_2$ , Anteil ca. 5%; 2.  $C_5H_5Mo(CO)_3H$ , Anteil ca. 25%) und danach mit Toluol eine violette Zone (Anteil ca. 70%) eluiert. Nach Einengen der Toluollösung auf ca. 1 ml, Zugabe von 10 ml Pentan und Abkühlen auf -20 °C erhält man violette Kristalle. Ausb. 74 mg (ca. 40%), Zers.-P. ab 87°C.

C₃₄H₅₂Mo₂O₆P₂Pd₂ (1023.4) Ber. C 39.90 H 5.12 Gef. C 40.02 H 5.04

Darstellung der Vierkerncluster 23a - c aus 21a - c: Analog wie für 22 beschrieben, ausgehend von ca. 0.2 mmol 21a - c (etwas verunreinigt, s. o.) und 0.30 mmol Na[C₅H₅M(CO)₃]. Aufarbeitung erfolgt wie für 22 beschrieben. Charakterisierung durch ¹H-NMR-Spektrum^{12b}). Ausb. ca. 50-60%.

Reaktion von 21a mit Na[ $C_3H_3Mo(CO)_3$ ]: Eine Lösung von ca. 0.3 mmol 21a (etwas verunreinigt, s. o.) in 5 ml Toluol wird bei -78 °C mit 81 mg (0.30 mmol) Na-[ $C_3H_3Mo(CO)_3$ ] versetzt und langsam auf Raumtemp. erwärmt. Man rührt 24 h, filtriert und chromatographiert die Lösung über Kieselgel. Mit Pentan und Toluol/Pentan (1:10) werden zunächst zwei gelbe Zonen (1. [ $C_5H_3Mo(CO)_3$ ]₂, Anteil ca. 5%; 2. ca. 1:1-Gemisch von  $C_3H_3Cr(CO)_3H$  und  $C_5H_5Mo(CO)_3H$ , Anteil ca. 25%) und danach mit Toluol eine dunkle Zone, die ein Gemisch der Vierkerncluster 23a, 23b und 24 (Verhältnis 43:23:34) enthält, eluiert. Eine Trennung von 23a, 23b und 24 durch wiederholte Umkristallisation oder Chromatographie gelingt nicht. Die Charakterisierung erfolgte an Hand der IR-, ¹H- und ³¹P-NMR-Spektren (siehe Tab. 6).

Reaktion von 21b mit  $Na[C_5H_5Cr(CO)_3]$ : Analog wie oben für 21a und Na-[C₅H₅Mo(CO)₃] beschrieben, ausgehend von ca. 0.3 mmol 21b (etwas verunreinigt, s. o.) und 67 mg (0.30 mmol) Na[C₅H₅Cr(CO)₃]. Neben [C₅H₅Mo(CO)₃]₂ und C₅H₅M(CO)₃H (M = Cr, Mo) erhält man ein Gemisch der Vierkerncluster 23a, 23b und 24 im Verhältnis 23: 36:41 (laut ¹H-NMR-Spektrum).

Reaktion von 20 mit Na[ $C_3H_3M(CO)_3$ ] (M = Cr, W): Analog wie für Darstellung von 22 beschrieben, ausgehend von 100 mg des Gemisches von 20 und  $C_5H_5M(CO)_3H$  (Verhältnis ca. 3:1) und 0.09 mmol Na[ $C_5H_5M(CO)_3$ ]. Man erhält ein Gemisch der Vierkerncluster 22 und 25a bzw. 25b (Verhältnis ca. 1:2). Die Charakterisierung erfolgte an Hand der IR-, ¹H- und ³¹P-NMR-Spektren (siehe Tab. 6).

#### CAS-Registry-Nummern

 $\begin{array}{c} 1:83044-05-7 \ / \ 2a: 102697-56-3 \ / \ 2b: 86422-53-9 \ / \ 2c: 96445-58-8 \ / \ 3:83384-72-9 \ / \ 4:83400-80-0 \ / \ 5: 102735-73-9 \ / \ 6: 102724-40-3 \ / \ 7: 102724-41-4 \ / \ 8: 102724-42-5 \ / \ 9: 83044-06-8 \ / \ 10: 102697-57-4 \ / \ 11: 102697-58-5 \ / \ 12: 102697-59-6 \ / \ 13: 96445-59-9 \ / \ 14a: 73769-57-0 \ / \ 14b: 62586-38-3 \ / \ 14c: 72533-08-5 \ / \ 12: 102697-59-6 \ / \ 13: 96445-59-9 \ / \ 14a: 73769-57-0 \ / \ 14b: 62586-38-3 \ / \ 14c: 72533-08-5 \ / \ 15: 83044-07-9 \ / \ 16: 83044-08-0 \ / \ 17: 83044-09-1 \ / \ 18: 83044-10-4 \ / \ 19: 102697-60-9 \ / \ 20: 102724-43-6 \ / \ 21a: 102697-61-0 \ / \ 21b: 102697-62-1 \ / \ 21c: 102697-63-2 \ / \ 22: 102735-74-0 \ / \ 23a: 87114-38-3 \ / \ 23b: \ 67254-46-0 \ / \ 23c: 87114-44-1 \ / \ 24: 102724-44-7 \ / \ 25a: 102724-45-8 \ / \ 25b: 102724-46-9 \ / \ (C_3H_3)_2Pd_2(PEt_3)_3: \ 83384-78-5 \ / \ C_3H_3M0(CO)_3 i: 120724-45-8 \ / \ 25b: 102724-46-9 \ / \ (C_3H_3)_2Pd_2(PEt_3)_3: \ 83384-78-5 \ / \ C_3H_3M0(CO)_3 i: 12072-3-57 \ / \ Na[C_3H_5C(CO)_3]: 12107-36-7 \ / \ Na[C_5H_5C(CO)_2]: \ 35885-95-1 \ / \ Na[C_6H_5C(CO)_2]: \ 1252-20-4 \ / \ Hg[C_3H_5C(CO)_2]: \ 35885-95-1 \ / \ Na[Mn(CO)_3]: 12079-65-1 \ / \ C_3H_5M0(CO)_3 i: 12079-65-1 \$ 

- ¹⁾ W. L. Gladfelter und G. L. Geoffroy, Adv. Organomet. Chem. 18, 207 (1980).
- ²⁾ B. F. G. Johnson (Ed.), Transition Metal Clusters, J. Wiley and Sons, New York 1980.
- ³⁾ P. Braunstein, R. Bender und J. Kervennal, Organometallics 1, 1236 (1982). ⁴⁾ F. G. A. Stone, Angew. Chem. **96**, 85 (1984); Angew. Chem., Int. Ed. Engl. **23**, 89 (1984). ⁵⁾ H. Vahrenkamp, Adv. Organomet. Chem. 22, 169 (1983).
- ⁶¹ H. Werner, Angew. Chem. 89, 1 (1977); Angew. Chem., Int. Ed. Engl. 16, 1 (1977). –
   ^{6b} H. Werner, J. Organomet. Chem. 200, 335 (1980). ^{6c} H. Werner, Adv. Organomet.
   Chem. 19, 155 (1981).
- ⁷⁾ P. Hofmann, Chemiedozententagung Kaiserslautern 1982, Vortragsreferate S. 113; siehe auch Lit.6c).
- 8) H. Werner, H.-J. Kraus und P. Thometzek, Chem. Ber. 115, 2914 (1982).
- ⁹⁾ H. Werner und P. Thometzek, Angew. Chem. 94, 707 (1982); Angew. Chem., Int. Ed. Engl. 21, 692 (1982).
- ¹⁰⁾ R. J. Cross und R. Wardle, J. Chem. Soc. A 1971, 2000.
- ¹¹ ¹¹a) P. Thometzek, K. Zenkert und H. Werner, Angew. Chem. **97**, 520 (1985); Angew. Chem., Int. Ed. Engl. **24**, 516 (1985). ^{11b)} H. Werner, P. Thometzek, K. Zenkert, H.-J. Kraus
- ¹² ^{12a} R. Bender, P. Braunstein, Y. Dusausoy und J. Protas, Angew. Chem. **90**, 637 (1978); Angew. Chem., Int. Ed. Engl. **17**, 596 (1978). ^{12b} R. Bender, P. Braunstein, J.-M. Jud und Y. Dusausoy, Inorg. Chem. 22, 3394 (1983).
- ¹³⁾ R. Colton und M. J. McCormick, Coord. Chem. Rev. 31, 1 (1980).
- ¹⁴⁾ P. Braunstein, J.-M. Jud und J. Fischer, J. Chem. Soc., Chem. Commun. 1983, 5.
- ¹⁵ ¹⁵ M. Pfeffer, J. Fischer, A. Mitschler und L. Ricard, J. Am. Chem. Soc. 102, 6338 (1980). ^{15b} M. Pfeffer, J. Fischer und A. Mitschler, Organometallics 3, 1531 (1984).
   ¹⁶ ^{16a} R. Colton, M. J. McCormick und C. D. Pannan, J. Chem. Soc., Chem. Commun. 1977,
- 823. 16b) P. L. Goggin, R. J. Goodfellow, I. R. Herbert und A. G. Orpen, J. Chem. Soc., Chem. Commun. 1981, 1077.
- ¹⁷⁾ H. Werner, H.-J. Kraus, U. Schubert und K. Ackermann, Chem. Ber. 115, 2905 (1982).
- ¹⁸⁾ T. Madach und H. Vahrenkamp, Z. Naturforsch., Teil B 33, 1301 (1978).
- ¹⁹⁾ P. Lemoine, A. Giraudeau, M. Gross und P. Braunstein, J. Chem. Soc., Chem. Commun. 1980, 77.
- ²⁰⁾ K. Wade, Chem. Brit. 11, 177 (1975); Adv. Inorg. Chem. Radiochem. 18, 1 (1976).
- ²¹⁾ R. W. Rudolph, Acc. Chem. Res. 9, 446 (1976).
- ²²⁾ H. Werner und H.-J. Kraus, Chem. Ber. 113, 1072 (1980).
- 23) H.-J. Kraus, Dissertation, Univ. Würzburg 1981.
- ²⁴⁾ T. S. Piper und G. Wilkinson, J. Inorg. Nucl. Chem. 3, 104 (1956).
- ²⁵⁾ Inorg. Synth. 7, 198 (1963).
- ²⁶⁾ W. P. Fehlhammer, W. A. Herrmann und K. Öfele in G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Bd. 3, S. 1815, Enke Verlag Stuttgart 1981.
- ²⁷⁾ W. Malisch und M. Kuhn, Chem. Ber. 107, 979 (1974).

[31/86]